
AMTH142 Lecture 14

Monte-Carlo Integration

Simulation

April 20, 2007

All the Scilab functions defined in this Lecture can be found in the file
l14.sci in the directory for this lecture.

Contents

14.1 Monte-Carlo Integration . 2
14.1.1 One Dimension . 2
14.1.2 The Central Limit Theorem 4
14.1.3 Estimating Volumes 5
14.1.4 Multiple Integrals . 6

14.2 Simulation . 9
14.2.1 Two Dice . 9
14.2.2 Errors . 10
14.2.3 Two Loaded Dice . 12
14.2.4 The Birthday Problem 13

14.3 Appendix – Boolean Matrices 14
14.3.1 Comparison and Logical Operators 14
14.3.2 Real and Boolean Matrices 15
14.3.3 find . 16

1

14.1 Monte-Carlo Integration

14.1.1 One Dimension

We wish to evaluate an integral

I =

∫ b

a
f(x)dx

The average value of f(x) is

f̄ =
1

b − a
I

so that
I = (b − a)f̄

Suppose we choose points x1, . . . , xn randomly in the interval [a, b] and use
these to estimate the average value of f(x):

f̄ ≈
1

n

n
∑

i=1

f(xi)

then

I ≈
(b − a)

n

n
∑

i=1

f(xi)

This is Monte-Carlo integration.

Implementation

Here is a Scilab implementation of Monte-Carlo integration of a function f

over the interval [a,b] using n points.

function ii = monte1d(f, a, b, n)

x = (b-a)*rand(1,n) + a // choose n random points in [a,b]

fx = f(x) // evaluate f(x) at each point

ii = (b-a)*sum(fx)/n // (b-a) * average of function

endfunction

Example

Let us estimate the integral

I =

∫

2π

0

e−x sin(x)dx

The exact value, from integration by parts, is

I =
1

2
(1 − e−2π) = 0.4990663.

Here is a Monte-Carlo estimate using Scilab. The first step is to define the
function we want to integrate

2

-->function y = f(x)

--> y = exp(-x).*sin(x)

-->endfunction

-->ii = monte1d(f, 0, 2*%pi, 100000)

ii =

0.4983886

We can compare to the exact answer and find the relative error:

-->ie = (1 - exp(-2*%pi))/2

ie =

0.4990663

-->err = abs(ii - ie)/ie

err =

0.0013579

i.e. with 10,000 points we get a relative error of the order of 0.1%.
Let us see how the error varies with the number of points n. We will

perform a Monte-Carlo approximation with 2, 4, 8, . . . , 220 points using a
simple for loop and then compute the error for each approximation:

-->in = zeros(1,20);

-->for k = 1:20

--> in(k) = monte1d(f, 0 , 2*%pi, 2^k);

-->end

-->err = abs(in - ie)/ie

err =

column 1 to 4

! 0.3288851 0.3764572 0.4697016 0.0148549 !

column 5 to 8

! 0.2502828 0.1665171 0.1823111 0.0565038 !

column 9 to 12

3

! 0.0530368 0.0301861 0.0120509 0.0248556 !

column 13 to 16

! 0.0071772 0.0023424 0.0089532 0.0031000 !

column 17 to 20

! 0.0009980 0.0007203 0.0019182 0.0022399 !

As expected the error decreases as the number of points increases. Plotting
the log of the error is the most instructive:

-->plot2d(log10(err))

0 2 4 6 8 10 12 14 16 18 20
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

14.1.2 The Central Limit Theorem

The central limit theorem of probability theory gives an estimate of the
error in Monte-Carlo integration. For our purposes it can be formulated
as follows: Suppose the mean of a function f(x) is estimated by random
sampling

f̄est =
1

n

n
∑

i=1

f(xi)

Then the variance of the estimated mean is

Var f̄ =
σ2

n

where σ2 is the variance of f(x).
It is usual to take the standard deviation as a measure of error. Then

we have
Error =

σ
√

n

4

The important point here is that the error goes to zero like 1/
√

n. This
says, for example, that to decrease the error by a factor of 1000, we must
increase the sample size by a factor of 1000000.

We will compare our results in the previous example with this theory.
The variance of f(x) = e−x sinx is

σ2 =

∫

2π

0

(f(x) − f̄)2 ≈ 1.19

so the expected error in Monte-Carlo integration is

En =
σ
√

n
≈

1.09
√

n

We can create a semi-log plot of the estimated Monte-Carlo error as
follows:

-->n = 1:20;

-->ee = 1.09*(2 .^n).^(-1/2);

-->plot2d(log10(ee))

0 2 4 6 8 10 12 14 16 18 20
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

The error in the computed values show random fluctuations, as is to be
expected, but that the theory gives a good account of the error.

14.1.3 Estimating Volumes

What is the volume of a unit sphere in 4-dimensions? We can obtain an
estimate by Monte-Carlo methods.

The unit sphere is the region

x2
1 + x2

2 + x2
3 + x2

4 ≤ 1

5

If we generate random points in the four dimensional cubic region [−1, 1] ×
[−1, 1] × [−1, 1] × [−1, 1] which contains the unit sphere, then an estimate
of the volume of the sphere

Volume of Sphere

Volume of Cube
≈

No. Points in Sphere

No. of Points in Cube

By symmetry we get the same result if work in a single quadrant, say [0, 1]×
[0, 1] × [0, 1] × [0, 1].

Here is the calculation in Scilab. First we write a function monte4d to
do the calculation:

function v = monte4d(n)

k = 0 \\ count of number of points in sphere

for i = 1:n

x = rand(1,4) \\ x = point in unit cube

if (norm(x) <= 1) \\ point x lies in sphere

k = k+1

end

end

v = 16*k/n \\ 16 quadrants!

endfunction

-->monte4d(100000)

ans =

4.91392

By the way, the exact answer is π2/2 = 4.9348

14.1.4 Multiple Integrals

Generalizing the formula for Monte-Carlo integration in one dimension, we
have a formula for Monte-Carlo integration in any number of dimensions: if

I =

∫

Ω

f dV

then

I ≈ Volume of Ω × Average Value of f in Ω

For one-dimensional integration problems Monte-Carlo integration is
quite inefficient. For high-dimensional integration it is a useful technique.
The reasons for this are twofold:

6

1. The fact that error is proportional to 1/
√

n does not depend on the
dimension. In other words it performs just as well in high dimensions
as in one dimension.

2. It can easily handle regions with irregular boundaries. The method
used in the previous section to estimate volumes can easily be adapted
to Monte-Carlo integration over any region.

Example

We will evaluate the integral

I =

∫∫

Ω

sin
√

ln(x + y + 1) dx dy

where Ω is the disk
(

x −
1

2

)2

+

(

y −
1

2

)2

≤
1

4

Since the disk Ω is contained within the square [0, 1] × [0, 1], we can
generate x and y as uniform [0, 1] random numbers, and keep those which
lie in the disk Ω.

function ii = monte2da(n)

k = 0 // count no. of points in disk

sumf = 0 // keep running sum of function values

while (k < n) // keep going until we get n points

x = rand(1,1)

y = rand(1,1)

if ((x-0.5)^2 + (y-0.5)^2 <= 0.25) then // (x,y) is in disk

k = k + 1 // increment count

sumf = sumf + sin(sqrt(log(x+y+1))) // increment sumf

end

end

ii = (%pi/4)*(sumf/n) // %pi/4 = volume of disk

endfunction

-->monte2da(100000)

ans =

0.5679196

Example

In the Monte-Carlo approximation

I ≈ Volume of Ω × Average Value of f in Ω

7

we can estimate the volume of the region Ω at the same time as we estimate
average the function f .

We generate points in a volume V – usually rectangular – containing Ω.
If we generate n points in V of which k lie in the region Ω then

Volume Ω ≈
k

n
Volume V

Since

Average Value of f in Ω ≈
1

k

∑

f

the k’s cancel and we have

I ≈ Volume V ×
1

n

∑

f.

where the sum is over the points lying in the region Ω.
We will now evaluate the integral

I =

∫∫

Ω

y dxdy

over the semi-elliptical region Ω given by

x2 + 4y2 ≤ 1, y ≥ 0

−1 1

1

2

x

y

Although there is a simple formula for the area of an ellipse, we will use
Monte-Carlo to estimate the area as we perform the integration. Since the
region Ω is contained within the rectangle [−1, 1] × [0, 1/2], we generate x
and y as uniform [−1, 1] and uniform [0, 1/2] random numbers respectively.
We will generate n random numbers, and use those lying in Ω to form the
sum of the function. Note that the rectangular region has area = 1.

function ii = monte2db(n)

sumf = 0 // keep running sum of function values

for i = 1:n

x = 2*rand(1,1) - 1 // x in [-1,1]

y = rand(1,1)/2 // y in [0,1/2]

if (x^2 + 4*y^2 <= 1) // point lies in region

sumf = sumf + y // increment sumf

end

8

end

ii = sumf/n // Volume = 1

endfunction

-->monte2db(100000)

ans =

0.1668539

The exact value is 1/6.

14.2 Simulation

14.2.1 Two Dice

Simulation using random numbers is a technique for estimating probabilities.
It is best understood by looking at examples.

The first example is an easy one which will illustrate the effective use of
Scilab. Suppose I toss two unbiased dice. What is the probability that the
sum of the numbers showing is less than or equal to 4? A simple counting
argument shows that the answer is 6/36 = .16667.

We will simulate 10 tosses of the dice. The number showing on each die
is an integer uniformly distributed between 1 and 6. We saw how generate
such random numbers in Lecture 13, and we will represent the results of our
simulation by a 2 × 10 array.

-->x = floor(6*rand(2,10) + 1)

x =

! 2. 4. 1. 6. 2. 3. 6. 3. 5. 5. !

! 2. 1. 1. 1. 5. 6. 6. 5. 2. 6. !

Now we can calculate the sum of the two dice, noting that sum(x,’r’) sums
over the columns of the matrix x while sum(x,’c’) sums over the rows:

-->s = sum(x,’r’)

s =

! 4. 5. 2. 7. 7. 9. 12. 8. 7. 11. !

What we need now is to count how many of these are ≤ 4. We can use
boolean arrays to do this efficiently:

-->ss = (s <= 4)

ss =

! T F T F F F F F F F !

9

Here T and F stand for true and false, and this array just tells us whether
the corresponding elements of s are ≤ 4. The boolean elements T and F also
have the numerical values 1 and 0 respectively, so we can find the number
of cases in which the sum of the two dice is ≤ 4 by taking the sum of this
array.

-->xx = sum(ss)

xx =

2.

So in 2 of our 10 simulations, the sum was less than or equal to four.
We can write a function to do this:

function y = dice2(n)

x = floor(6*rand(2,n) + 1)

s = sum(x, ’r’)

ss = (s <= 4)

y = sum(ss)/n

endfunction

-->dice2(100000)

ans =

0.16727

14.2.2 Errors

The discussion of errors and the central limit theorem also applicable to
general simulation problems. The expected error in n trials is

Error =
σ
√

n

Unfortunately we do not usually know the value of σ which is the variance
of the probability we are estimating. It is usually possible to get an estimate
of σ from the simulation itself, but we will mainly be concerned with the
n−1/2 factor which determines how the error depends on n.

Let us look at the error in our dice problem for 2, 4, . . . , 218 trials:

-->dn = zeros(1,18);

-->for k = 1:18

--> dn(k) = dice2(2^k);

-->end

-->dn

10

dn =

column 1 to 7

! 0.5 0.5 0. 0.25 0.15625 0.1875 0.1484375 !

column 8 to 11

! 0.140625 0.1367188 0.1767578 0.1601562 !

column 12 to 15

! 0.1608887 0.1691895 0.1682739 0.1650085 !

column 16 to 18

! 0.1669006 0.1661758 0.1661339 !

According to the theory the error should be proportional to n−1/2. Sim-
ply superimposing a line of slope -1/2 should indicate whether the error
really is decreasing as theorized.

-->err = abs(dn-1/6);

-->n = 2 .^(1:18);

-->ee = n.^{-1/2};

-->plot2d(log10(err))

-->plot2d(log10(ee))

0 2 4 6 8 10 12 14 16 18
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

11

14.2.3 Two Loaded Dice

Suppose now that our dice are loaded, so that the probabilities are:

Outcome 1 2 3 4 5 6

Probability .20 .14 .22 .16 .17 .11

Cumulative .20 .34 .56 .72 .89 1.00

How can we simulate tossing these dice? Suppose x is uniformly dis-
tributed on [0, 1]. If x ∈ [0, .20] we assign the value 1, if x ∈ [.20, .34] we
assign the value 2 etc. A Scilab function to assign these probabilities is easy
to write using if-then-else statements, but we can do better by using
boolean arrays:

function y = ldice(x)

x1 = (x >= 0.20)

x2 = (x >= 0.34)

x3 = (x >= 0.56)

x4 = (x >= 0.72)

x5 = (x >= 0.89)

y = 1*x1 + 1*x2 + 1*x3 + 1*x4 + 1*x5 + 1

endfunction

In the function above, each of x1 to x5 is a boolean vector, we multiply 1

to convert to a numerical value and the add the results.

-->x = rand(1,8)

x =

column 1 to 4

! 0.0976644 0.8918166 0.1762568 0.0862309 !

column 5 to 8

! 0.2136821 0.9119316 0.5557921 0.5549552 !

-->ldice(x)

ans =

! 1. 6. 1. 1. 2. 6. 3. 3. !

Our function to estimate the probability that the sum of the two dice is
less than or equal to 4 is nearly the same as the previous example:

12

function y = ldice2(n)

x = ldice(rand(2,n))

s = sum(x, ’r’)

ss = (s <= 4)

y = sum(ss)/n

endfunction

-->ldice2(100000)

ans =

0.20316

You might like to calculate the exact answer and compare.

14.2.4 The Birthday Problem

Suppose we have N people in room. What is the probability that (at least)
two people share the same birthday.

To solve this by simulation we can proceed as follows:

1. Generate N random birthdays.

2. Check if two coincide.

Generating the random birthdays is easy, just generate a random vector
of integers in the range 1 to 365 (we will ignore leap years). To check whether
such a vector contains two numbers the same, we first sort the birthdays,
and then only have to check whether neighbouring components of the vector
are equal.

function p = birthdays(n, trials)

k = 0

for i = 1:trials

bs = floor(365 * rand(1,n) + 1)

bs = sort(bs)

for j = 1:(n-1)

if (bs(j) == bs(j+1)) // we have found a match

k = k+1 // increment count

break // break out of for loop

end

end

end

p = k/trials

endfunction

Only 23 people are needed for the probability that two have the same
birthday to be greater than 0.5. Let us check this:

13

-->birthdays(22, 100000)

ans =

0.47559

-->birthdays(23, 100000)

ans =

0.50831

-->birthdays(24, 100000)

ans =

0.53805

For N = 100 it is almost certain that two people will share a birthday:

-->birthdays(100, 100000)

ans =

1.

14.3 Appendix – Boolean Matrices

The boolean values are %t, printed T, for true and %f, printed F, for false.
Matrices, and particularly vectors, of boolean values are often useful in
simulation.

14.3.1 Comparison and Logical Operators

Boolean matrices are usually constructed by applying comparison operators:

== equal
~= not equal
< less than
> greater than
<= less than or equal to
>= greater than or equal to

to real matrices.

-->a=rand(4,4)

a =

! 0.2806498 0.1121355 0.8415518 0.1138360 !

! 0.1280058 0.6856896 0.4062025 0.1998338 !

14

! 0.7783129 0.1531217 0.4094825 0.5618661 !

! 0.2119030 0.6970851 0.8784126 0.5896177 !

-->bb = a > 0.4

bb =

! F F T F !

! F T T F !

! T F T T !

! F T T T !

The usual matrix operations, +, - and * are undefined for boolean ma-
trices. The logical operators

& and
| or
~ not

apply element by element to boolean matrices.

-->~bb

ans =

! T T F T !

! T F F T !

! F T F F !

! T F F F !

14.3.2 Real and Boolean Matrices

Boolean matrices may be converted to real 0-1 matrices, 0 = false, 1 = true,
with the bool2s command:

-->bool2s(bb)

ans =

! 0. 0. 1. 0. !

! 0. 1. 1. 0. !

! 1. 0. 1. 1. !

! 0. 1. 1. 1. !

-->sum(ans)

ans =

9.

15

We could have got the same result with sum(bb), though this would
seem to contradict the rule that we can’t add booleans. However this can
be quite handy for counting the number of components of a vector or matrix
satisfying some condition, e.g.

-->sum(a > 0.4)

ans =

9.

Scilab allows arithmetic operations where one operand is boolean and
the other a number. In this case the boolean values are converted to 0-1
values. For example;

-->bb

bb =

! F F T F !

! F T T F !

! T F T T !

! F T T T !

-->bb*4

ans =

! 0. 0. 4. 0. !

! 0. 4. 4. 0. !

! 4. 0. 4. 4. !

! 0. 4. 4. 4. !

-->bb-1

ans =

! - 1. - 1. 0. - 1. !

! - 1. 0. 0. - 1. !

! 0. - 1. 0. 0. !

! - 1. 0. 0. 0. !

14.3.3 find

The find operator returns the indices of the true components of boolean
vector or matrix. It is most useful for vectors, so we will concentrate on
those:

16

-->a = rand(1,12)

a =

column 1 to 4

! 0.5878720 0.4829179 0.2232865 0.8400886 !

column 5 to 8

! 0.1205996 0.2855364 0.8607515 0.8494102 !

column 9 to 12

! 0.5257061 0.9931210 0.6488563 0.9923191 !

-->bb = a > 0.4

bb =

! T T F T F F T T T T T T !

-->find(bb)

ans =

! 1. 2. 4. 7. 8. 9. 10. 11. 12. !

We can omit the intermediate step of constructing the boolean vector:

-->ii = find(a > 0.4)

ii =

! 1. 2. 4. 7. 8. 9. 10. 11. 12. !

The vector of indices constructed in this way can be used to extract the
corresponding components of the vector, in this case all the components
greater than 0.4:

-->a(ii)

ans =

column 1 to 4

! 0.5878720 0.4829179 0.8400886 0.8607515 !

17

column 5 to 8

! 0.8494102 0.5257061 0.9931210 0.6488563 !

column 9

! 0.9923191 !

18

